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S U M M A R Y
Inversion of transient electromagnetic (TEM) data sets to image the subsurface three-
dimensional (3-D) electrical conductivity and magnetic permeability properties can be done
directly in the time domain. The technique, first introduced by Wang et al. for causal and diffu-
sive electromagnetic (EM) fields and subsequently implemented by Zhdanov & Portniaguine
in the framework of iterative migration, is based upon imaging methods originally developed
for seismic wavefields (Claerbout; Tarantola). In this paper, we advance the original deriva-
tions of Wang et al. and Zhdanov & Portniaguine to treat non-causal TEM fields, as well as
correct a flaw in the theory for treatment of magnetic field data. Our 3-D imaging scheme is
based on a conjugate-gradient search for the minimum of an error functional involving EM
measurements governed by Maxwell’s equations without displacement currents. Treatment for
magnetic field, voltage (time derivative of the magnetic field) and electric field data is given.
Small model perturbations in the functional can be efficiently computed by propagating the
data errors back into the model in reverse time along with a DC field, sourced by the inte-
grated data errors over the measurement time range. By correlating these fields, including the
time-integrated back-propagated fields, with the corresponding incident field and its initial
value at each image point, efficient computational forms for the gradients are developed. The
forms of the gradients allow for additional efficiencies when voltage and electric field data
are inverted. In such instances, the combined data errors can be back-propagated jointly, sig-
nificantly reducing the computation time required to solve the inverse problem. The inversion
algorithm is applied to the long offset transient electromagnetic (LOTEM) measurement con-
figuration thereby demonstrating its capability in inverting non-causal field measurements of
electric field and voltage, sourced by a grounded wire, over complex structures. Findings also
show that migration, without iteration or preconditioning, is not an effective imaging strategy;
reconstructions at the first inversion iteration bear little resemblance to simple or complex test
models.

Key words: 3D inversion, migration, transient electromagnetic fields.

1 I N T RO D U C T I O N

The time domain, or transient electromagnetic (TEM) method has
shown great potential in hydrological and hazardous waste site char-
acterization (cf. Pellerin & Alumbaugh 1997), mineral exploration
(cf. Nabighian & Macnae 1991) and general geological mapping and
geophysical reconnaissance. Because the technique is designed to
map variations in the subsurface electrical conductivity, it is also sen-
sitive to fluid saturation and porosity and permeability changes, thus
making the method potentially useful for remotely mapping the fluid
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†Formally affiliated with the Institute for Geophysics and Meteorology, Uni-
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properties of hydrocarbon and geothermal reservoirs. Nabighian
& Macnae (1991) describes modern TEM systems, which can be
deployed using many different types of transmitters and receiver
configurations, and can employ various types of transmitter cur-
rent waveforms. Whatever the configuration of the TEM system,
the measurement records the broad-band electromagnetic (EM) re-
sponse of the Earth over a specified time range, in the diffusive
regime for EM fields. Thus displacement currents can be neglected,
given the bandwidth of the system and scale and measurement times.
Here, the EM response is sensitive to the conductivity and magnetic
permeability properties of the Earth.

Fig. 1 illustrates the measurement technique, where the TEM re-
sponse of the Earth resulting from a loop or wire source is measured
at a given location near the surface of the Earth or in a borehole. This
measurement can include the magnetic field, or its time derivative
(voltage) or electric field at one or more points at fixed distances

C© 2004 RAS 5

(2005) 160, 5–32



6 G. A. Newman and M. Commer

Earth’s Surface

r1 

r2 

r3 

s1 

s2 

s3 

Survey Lines

 Loop/Wire 

Detector

(a) SURFACE TEM

(b) CROSSWELL TEM

σ2

µ2

µ2 σ2 
σ1

µ1

σ1

µ1

Figure 1. Illustrated are surface and borehole TEM measurement configurations, typically deployed in geophysical field investigations. The electrical con-
ductivity σ and magnetic permeability µ vary within the earth model.

from the source. The source is then moved to a new location along
a survey line or borehole and the sequence is repeated. Such TEM
surveys can generate large amounts of data. Hence computational
efficiency is essential with any data interpretation scheme.

A very popular and efficient approach to interpret TEM data is
one-dimensional (1-D) imaging (cf. Macnae & Lamontagne 1987;
Nekut 1987; Eaton & Hohmann 1989; Fullagar 1989; Macnae et al.
1991). Theses types of imaging algorithms generate a conductivity-
versus-depth profile at each location along a survey line and are often
plotted together to form a two-dimensional (2-D) image. To model
TEM data arising from magnetic permeability anomalies, Zhdanov
& Pavlov (2001) have developed a scheme based upon thin sheet
approximations. In general, there is scarcity of data interpretation
schemes for the electrical parameter µ because spatial variations in
magnetic permeability from that of free space are quite rare. When
changes in µ do occur, it is associated with magnetic ore bodies and
a small number of soils that exhibit high magnetic losses.

It is well known that 1-D conductivity imaging schemes allow for
fast interpretation of data, but can contain artifacts when applied
to data arising from 2-D or three-dimensional (3-D) geology (cf.
Newman et al. 1987). Moreover, in other types of TEM measurement
systems, such as the long offset transient electromagnetic (LOTEM)
method, simple imaging methods are not appropriate and the full
dimensionality of the interpretation problem needs to be addressed
(cf. Gunderson et al. 1986; Hördt et al. 1992; Hördt 1998; Hördt &
Müeller 2000; Hördt et al. 2000; Commer 2004).

Recently, Zhdanov et al. (2002) introduced an adaptation of the
thin sheet method to invert TEM data acquired over inhomogeneous
3-D geological structures. While this method looks promising, much
work remains to be done in accessing different types of 3-D TEM in-
version schemes because practical multidimensional TEM inversion

and new 3-D imaging schemes are now just beginning to emerge
(cf. Haber et al. 2004). Nevertheless, approximately 20 yr ago, the
pioneering work of Zhdanov & Frenkel (1983; plus many other
later works of Zhdanov) have advanced the idea of back propagat-
ing or migrating the scattered EM field into the Earth in order to
image the source of the scattering. The image condition was based
on an analogy to seismic migration (Claerbout 1971). It was along
these lines that Wang et al. (1994) developed the theory for solving
the full non-linear 3-D TEM inverse problem using the concept of
back-propagation, in a manner similar to that introduced by Taran-
tola (1984) for seismic wavefields. The significant contribution of
Wang et al. was the development of efficient computational forms
for the cost functional gradients, which are employed in conjugate
gradient/steepest descent solutions to the non-linear inverse prob-
lem. Gradient-type solutions are preferred for treating large-scale
data sets involving fine model parametrizations of the imaging do-
main in order to accurately map complex 3-D geological structure.
Following up on this work, Zhdanov & Portniaguine (1997) demon-
strated that the solution of the 3-D TEM inverse problem could
be formulated using iterative migration to derive gradients, which
can be used to minimize the residual-field energy flow through the
surface or profile of observations. This approach, which employs
back-propagation of the residual-field energy flow, is also summa-
rized in Zhdanov’s (2002) book on geophysical inverse theory, where
both the time and frequency domain problems are treated.

While the above-mentioned works comprise much progress in
proposing a tractable approach to 3-D TEM inversion, we have come
to realize that additional work on the problem remains. First, Wang
et al. applied their technique to 2-D synthetic examples that in-
volved the solution of the scalar wave equation for electric field
and left out crucial details for implementing the technique for
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general 3-D imaging involving vector fields. Moreover, their treat-
ment of the gradients was not correctly formulated for magnetic
field data types; this problem was not addressed by the Zhdanov &
Portniaguine (1997) and Zhdanov (2002) treatments of the 3-D TEM
inverse problem. We will show that the conductivity gradients for
magnetic field data actually involve a back-propagated or migrated
electric field step response. Secondly, Wang et al. only considered
gradients arising from causal source fields. Such fields and associ-
ated time derivatives are zero before a given fixed time, typically
denoted as time zero, and hence cannot be used to treat data arising
from a non-causal source. LOTEM would be an example of such
a measurement, where static DC electric and magnetic fields are
present before the steady transmitter current is shut-off. In contrast
Zhdanov’s work did treat this problem, but the computational forms
of the gradients are cumbersome to implement and not practical as
they involve an integration of the migrated field over an indefinite
time range, from the latest measurement time, T , to −∞. While this
integration can be carried out backwards in time to a point where
the migrated field has effectively decayed to zero, it is expensive. In
this paper, we present new gradient derivations for the non-causal
problem that avoids integrating the migrated field before time t = 0.

Utilizing new gradients, which are specified below, we will for-
mulate a 3-D TEM imaging scheme based on the concepts of back-
propagation and non-linear conjugate gradient (NLCG) inversion.
To make the scheme practical for 3-D imaging, we will also discuss
the details needed for efficient back-propagation and implementa-
tion on massively parallel computing architectures and platforms.
We will then demonstrate the scheme on LOTEM exploration prob-
lems, where a non-causal 3-D imaging capability is necessary to
interpret the data.

2 F O R M U L AT I O N O F T H E T E M
I N V E R S E P RO B L E M

2.1 Error functional specification

Consider the following TEM experiment: an EM source (loop or
grounded wire), denoted by s j , is energized with a source waveform
S(t), and the transient magnetic field, its time derivative (voltage)
and electric field are measured at positions ri ⊂ {r1, . . . .., rN}
from time t = 0 to time t = T ; before the onset of any measure-
ment the only assumption we make is that the electric and magnetic
fields arising from the source are at steady state and their associated
time derivatives are zero everywhere. Let us denote these respective
measurements as ho(ri , t |s j ), uo(ri , t |s j ) and eo(ri , t |s j ).

We now seek to find a model [a conductivity distribution σ (r′) and
a magnetic permeability distribution µ(r′)] such that the transient
magnetic field h(ri , t |s j ), the voltage (u(ri , t |s j ) = −µcoil∂h(ri ,
t |s j )/∂t , where µcoil is the magnetic permeability of the detector)
or the electric field e(ri , t |s j ), calculated from the model matches
the measured field according to some criteria. Here, we denote r′

as a point in the region where the model is allowed to vary and r
denotes a point in the region where measurements are made. An
obvious choice is to match the data in a least-squares sense, which
corresponds to finding a model that minimizes the error functional,

ϑ(σ, µ) = 1

2

∑
j

∑
i

∫ T

0

dt

t
δdo(ri , t |s j ) · δdo(ri , t |s j ), (1)

where

δdo(ri , t |s j ) = do(ri , t |s j ) − d(ri , t |s j ). (2)

Here, do(ri , t |s j ) and d(ri , t |s j ) correspond to the observed and
predicted data, be it the magnetic field, voltage or electric field. The
dependence of the functional, ϑ(σ , µ), on the model comes from
the implicit dependence of the calculated model response d on σ

and µ, which in turn satisfies the first-order Maxwell equations in
the diffusive approximation (i.e. without displacement currents):

σe − ∇xh = −j j (3)

∇xe + µ∂h/∂t = −m j , (4)

where j j denotes electric and m j magnetic source currents that
correspond to s j .

Following Wang et al. (1994), we also introduced a weighting of
1
t into the error functional to compensate for different information
density at different stages of the transient. This weighting is also
equivalent to integrating over logarithmic time in eq. (1). For statis-
tical reasons, it is advisable to also weight each field datum with the
associated measurement error to prevent undue importance being
given to poorly estimated data. In this respect, we would weight the
components of the data error vector, δdo(ri , t ; s j ), by an estimate
of the noise for each component, at that measurement location and
time. Nevertheless, where the transient changes sign we still need
to exercise caution with this weighting scheme. If too much weight
is given to small magnitude data near crossovers the corresponding
data fits will be superior, but poorer elsewhere. This phenomenon
arises because we are in effect giving too much weight to small mag-
nitude data near the crossover. Hence special care is needed to down
weight the data near crossovers. Wang et al. (1994) propose another
type of weighting scheme based upon a stitched log transformation
of the data with a linear scale for amplitudes near zero. We tested
this weighting scheme, but found it not to be that effective compared
with the scheme previously described.

To avoid over-fitting the data in the presence of noise, we find it
advantageous to normalize eq. (1) by a sum of natural logarithms,
whose arguments correspond to the ratio of the latest to earliest
delay time for each source–receiver pair. Specifically,

ϑN (σ, µ) = ϑ(σ, µ)
1
2

∑
j

∑
i

ln
(
tmax

j i

) − ln
(
tmin

j i

) . (5)

We note that the earliest measurable delay time is never zero in
eq. (5). As the data are fit to the estimated noise level, the normal-
ized component of the error functional (related to the data error)
will approach unity, assuming that the data error is Gaussian and
normally distributed.

Because we are interested in modelling complex geology it is
necessary to impose a fine model parametrization in the inverse so-
lution. This results in many more model parameters than data values
and further compounds the instability of the TEM inverse solution.
The stabilization approach adopted here uses Tikhonov regulariza-
tion (Tikhonov & Arsenin 1977), which imposes a smoothness con-
straint on the variation of the electrical conductivity and magnetic
permeability properties of the Earth and comes at an expense of an
increase in the data error, δdo, at the final model. To implement the
regularization, we divide the earth into M cells and assign to each
cell an initial electrical conductivity and a magnetic permeability
value. Let a model vector, m, which is of length 2M, denote these
geoelectrical properties and augment the error functional (eq. 1)

C© 2004 RAS, GJI, 160, 5–32



8 G. A. Newman and M. Commer

such that

ϑ(σ, µ) = 1

2

∑
j

∑
i

∫ T

0

dt

t
δdo(ri , t ; s j ) · δdo(ri , t ; s j )

+ λ

2
mTWTWm. (6)

The regularization matrix, W, consists of a finite-difference approx-
imation to the Laplacian (∇2) operator and the trade-off parameter,
λ, dictates the amount of smoothing to be incorporated into the
model and T denotes the transpose operator. It is now understood
that we seek solutions to Maxwell’s equations (eqs 3 and 4), where
σ and µ are piecewise constant.

Newman & Alumbaugh (2000) point out that the trade-off pa-
rameter should be held fixed during inversion iteration. To vary it
would, in principle, invalidate the use of previous search directions
in the NLCG iteration. The common recipe in selecting λ is based
upon a cooling approach (cf. Haber & Oldenburg 1997); we carry
out multiple solutions to the inverse problem using NLCGs, starting
with a large fixed value for λ. As λ is reduced, the data error, rep-
resented by the first term in eq. (6), will decrease. We continue this
process of reducing λ until the data error agrees with a target misfit
based upon the assumed noise content of the data. Note that if λ is
to be changed during the NLCG iteration, it will be necessary to
discard the previous search direction and re-initialize the algorithm
using the steepest descent direction at the current model.

As previously mentioned minimization of eq. (6) is to be carried
out using the NLCG method. This method is ideal for treating ex-
tremely large data sets and imaging volumes, because of its minimal
storage and computational requirements, and converges faster than
the steepest descent (cf. Wang et al. 1994; Newman & Alumbaugh
2000; Zhdanov 2002). With a careful implementation of NLCG,
each inversion iteration requires only a few solutions of the forward
modelling problem for each fixed source and also includes the ini-
tial value or DC related problem for non-causal fields. Specifically,
one application of the forward code is used to compute the data
in the current model, another to compute the gradient and one or
two additional simulations to compute a step length along a descent
direction.

2.2 Specification of the gradients

Efficient computation of the gradient of the error functional is crit-
ical in an NLCG scheme. To fully understand how we will arrive
at computationally efficient gradients, refer to Appendix A for a
brief review on the theory of Maxwell’s equations for 3-D hetero-
geneous media, solution of these equations using dyadic Green’s
functions and their corresponding adjoints. A short discussion on
the reciprocity relationships between dyadic Green’s functions and
their adjoints will also be presented. This review will provide the
necessary background to develop efficient formulae for the error
functional gradient, extended to non-causal electric field, voltage
and magnetic field data types. It will also allow us to show that
the conductivity gradients for magnetic field data actually involve a
back-propagated electric field step response.

In Table 1, we state the formulae for the gradients of electric
field data, γ e

σ and γ e
µ, voltage, γ u

σ and γ u
µ, and magnetic field, γ h

σ ,
and γ h

µ; detailed derivation of these gradients can be found in Ap-
pendices B, C and D. Note further that these gradients treat only
the data component of the error functional (eq. 1) and are consid-
ered differential or point gradients; there is no volume associated
with the point where the gradient is evaluated. To obtain gradients

Table 1. Point wise gradients for electric conductivity and for magnetic
permeability.

Point Wise Gradients for Electric Conductivity

γ e
σ (r′) =

∑
j

∫ T

0
dt ′e(r′, t ′; s j ) · eb(r′, t ′; s j |δeo)

−
∑

j

eDC(r′; s j ) ·
∫ T

0
dt ′eb(r′, t ′; s j |δeo),

+
∑

j

eDC(r′; s j ) · eDC
b (r′; s j |δeo),

γ u
σ (r′) =

∑
j

∫ T

0
dt ′e(r′, t ′; s j ) · eb(r′, t ′; s j |δuo)

−
∑

j

eDC(r′; s j ) ·
∫ T

0
dt ′eb(r′, t ′; s j |δuo),

γ h
σ (r′) =

∑
j

∫ T

0
dt ′e(r′, t ′; s j ) · estep

b (r′, t ′; s j |δho)

−
∑

j

eDC(r′; s j ) ·
∫ T

0
dt ′estep

b (r′, t ′; s j |δho).

+
∑

j

eDC(r′; s j ) · eDC
b (r′; s j |δho).

Point Wise Gradients for Magnetic Permeability

γ e
µ(r′) =

∑
j

∫ T

0
dt ′

∂

∂t ′
h(r′, t ′; s j ) · ∂

∂t ′
hb(r′, t ′; s j |δeo),

γ u
µ (r′) =

∑
j

∫ T

0
dt ′

∂

∂t ′
h(r′, t ′; s j ) · ∂

∂t ′
hb(r′, t ′; s j |δuo),

γ h
µ (r′) =

∑
j

∫ T

0
dt ′

∂h(r′, t ′; s j )

∂t ′
· hb(r′, t ′; s j |δho).

+
∑

j

hDC(r′; s j ) · hDC
b (r′; s j |δho).

with respect to a finite size volume or cell, they must be integrated
over the volume of that cell; here we multiply the point gradients
at the cell centre by the corresponding cell volume and add to them
the regularized component of the gradient, determined directly from
the second term in eq. (6), where

γ reg = λWTWm. (7)

In a later section of the paper, we will discuss how the cell-based
gradients are further stabilized to provide positive estimates of the
piecewise constant electric parameters, σ and µ.

Fields for the forward problem, including their initial values at
DC, are specified by e and eDC for the electric field and h and hDC

for the magnetic field. The time-dependent fields, e and h, satisfy
Maxwell’s eqs (3) and (4), while the DC fields are determined by
solving these equations in the steady state limit. It is reasonable to de-
fine different types of back-propagated fields, as becomes clear from
the gradient derivations in the appendices. First, one has to distin-
guish between data residuals/errors as defined by eq. (2) because the
conductivity gradient will depend upon data type. These gradients
involve a back-propagated electric field, denoted by eb, which can be
sourced by data residuals/errors in the electric field, voltage or mag-
netic field. However, for magnetic field data, the back-propagated
electric field step response of eb is actually required and is given by

estep
b (r′, t ′; s j |δho) = ∫ t ′

T dteb(r′, t ; s j |δho). To treat the non-causal
part of the conductivity gradients (γ e

σ and γ h
σ ) we require DC back-

propagated electric fields, eDC
b (r′; s j |δeo) = ∫ T

−∞ dteb(r′, t ; s j |δeo)
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3-D transient electromagnetic inversion 9

and eDC
b (r′; s j |δho) = ∫ T

−∞ dteb(r′, t ; s j |δho), which are sourced by
the electric and magnetic field data errors and satisfy the back-
propagation field equations at steady state. A back-propagated mag-
netic field is needed to specify gradients for the magnetic permeabil-
ity, where hb can be sourced for electric field, voltage and magnetic
field data errors; for electric field and voltage data we actually re-
quire the time derivative of hb. To complete the specification, a DC
back-propagated magnetic field, hDC

b (r′; s j | δho), sourced by the
magnetic field data errors, is also required for γ h

µ.
From Wang et al. (1994), one can show that the back-propagated

fields eb and hb, sourced with the electric field data errors δeo at
all the receiver positions radiating as electrical current sources in
reverse time, satisfy the adjoint Maxwell equations that are given by

Figure 2. Checks on the gradients are shown for a vertical magnetic dipole
source. (a) Shows gradient comparisons for electric field data (y component)
plotted as a percentage difference. (b) Shows the corresponding comparisons
for voltage data (z component) and (c) for magnetic field data (z component).
Note the transmitter location is indicated by the symbol � and is positioned
at (x, z) = (0, 0 m), while the receiver location, also indicated by the symbol
�, is positioned at (x, z) = (100, 0 m).

σeb + ∇xhb = −
∑

i

δeo(ri , t ; s j )

t
δ(r − ri ), (8)

∇xeb + µ∂hb/∂t = 0, (9)

Figure 3. Checks are shown on the gradients for a horizontal (y-directed)
electric dipole source. (a) Shows gradient comparisons for electric field data
(y component) plotted as a percentage difference. (b) Shows the correspond-
ing comparisons for voltage data (z component). Location of the transmitter
and receiver are indicated by the symbol � and are positioned at (x, y) =
(0, 0 m) and (100, 0 m), respectively.

Figure 4. Comparison of gradients for vertical magnetic field data com-
puted using back propagation and perturbation, arising from a vertical mag-
netic dipole source. Comparison is plotted as a percentage difference and
uses a finer computational mesh. In the x direction outside the receiver well,
the mesh now consists of nodes placed at 100, 105, 110, 115, 120, 130,
140, 150, 170 and 200 m instead of nodes places at 100, 110, 130, 160 and
200 m, as before. Significant improvement is observed for image points near
the receiver well (compare with Fig. 2c).

C© 2004 RAS, GJI, 160, 5–32



10 G. A. Newman and M. Commer

from time t = T to 0, where eb and hb are zero for t ≥ T . Sim-
ilar equations and final conditions hold for the back-propagated
fields sourced by either the voltage or magnetic field data residuals.
For the voltage residuals, the back-propagation field equations are
given as

σeb + ∇xhb = 0, (10)

−∇xeb − µ∂hb/∂t = −
∑

i

µ(ri )
δuo(ri , t ; s j )

t
δ(r − ri ), (11)

while for magnetic field data residuals, they are

σeb + ∇xhb = 0, (12)

−∇xeb − µ∂hb/∂t = −
∑

i

δho(ri , t ; s j )

t
δ(r − ri ), (13)

over the time range t = T to 0.

Figure 5. At top, a simple 3-D model is illustrated that will be used to test the imaging scheme. Further shown are (a) the LOTEM transmitter and receiver
geometry along with the reconstructed conductivity model at the surface of the Earth, (b) the reconstructed model at 100 m depth, (c) the x–z cross-section of
the reconstructed model (Y = 0 m) that bisects the transmitter and (d) the reconstructed y–z cross-section at X = 300 m. The actual location of the target body
is indicated by the white rectangles in the figure.

Derivation of the back-propagated DC field equations for eDC
b and

hDC
b sourced by the electric and magnetic field data errors can also

be found in Appendices B and D, respectively. Here, we state the
equations directly. For eDC

b sourced by the magnetic field data errors,
we have

∇x∇xeDC
b = ∇x

∑
i

∫ T

0
dt

δho(ri , t)

t
δ(r − ri ). (14)

Because eq. (14) has a non-trivial null space (the vector fields de-
scribed by the gradient of a scalar potential), special techniques are
needed to deflate this null space out from eDC

b (r′| δho). Methods of
solution that accomplish this task can be found in Chan et al. (2002).
For eDC

b , sourced by the electric field data errors, we set ∇θ b = eDC
b

and solve the following Possion problem

∇ · σ∇θb = −∇ ·
∑

i

∫ T

0
dt

δeo(ri , t ; s j )

t
δ(r − ri ). (15)

C© 2004 RAS, GJI, 160, 5–32



3-D transient electromagnetic inversion 11

Analogously for hDC
b , we set ∇ φb = hDC

b and solve

∇ · µ∇φb = ∇ ·
∑

i

∫ T

0
dt

δho(ri , t ; s j )

t
δ(r − ri ), (16)

for the back-propagated DC magnetic field problem.
Thus, the gradients for a fixed source can be computed by propa-

gating the data errors back into the model in reverse time along with
a DC field that arises with the time integrated electric or magnetic
field data errors. By correlating these fields, including the time-
integrated back-propagated fields, with the corresponding incident
field and its initial value at each image point, efficient computational
forms for the gradients have been developed. Moreover, with a given
source and data type, as Wang et al. (1994) demonstrated, two for-
ward simulations are required using Maxwell eqs (3–4) forward in
time and the corresponding adjoint equations backwards in time,
eqs (8–9), (10)–(11), or (12)–(13). While these adjoint equations
depend upon the data type, they can be stepped backward in time
with exactly the same finite difference algorithm that marches the
ordinary Maxwell’s equations forward in time (Commer & New-
man 2004; Wang et al. 1994). However, if a static field is present
before the transmitter/source is shut-off, we also have two addi-
tional DC boundary value problems to solve. The first gives the
DC field in the medium resulting from the impressed source and
the second the back-propagated DC field, which is sourced with the
time-integrated electric or magnetic field data errors (eqs 14, 15
or 16).

From these tables, we observe that the gradient for electric field
and voltage data types can be computed jointly if both types of
data are present; this allows for additional efficiencies when voltage
and electric field data are jointly inverted. Using superposition, the
combined electric conductivity and magnetic permeability gradients
are specified as

γ e+v
σ (r′) =

∑
j

∫ T

0
e(r′, t ′; s j ) · eb

(
r′, t ′; s j |δeo + δuo

)
dt ′

−
∑

j

eDC(r′; s j ) ·
∫ T

0
eb

(
r′, t ′; s j |δeo + δuo

)
dt

+
∑

j

eDC(r′; s j ) · eDC
b

(
r′; s j |δeo

)
(17)

and

γ e+v
µ (r′) =

∑
j

∫ T

0
dt ′ ∂

∂t ′ h(r′, t ′; s j ) · ∂

∂t ′ hb

(
r′, t ′; s j |δeo + δuo

)
,

(18)

where the combined back-propagated fields can be obtained from

σeb + ∇xhb = −
∑

i

δeo(ri , t ; s j )

t
δ(r − ri ), (19)

∇xeb + µ∂hb/∂t = −
∑

i

µ(ri )
δ(ri , t ; s j )

t
δ(r − ri ), (20)

over the time range t = T to 0. Back-propagating the combined
data errors (electric field and voltage) for a fixed source significantly
reduces the time required to compute the gradients and ultimately
impacts on the time needed to solve the TEM inverse problem. This
result also differs with derivations found in Zhdanov (2002) and
Zhdanov & Portniaguine (1997), where joint migration or back-
propagation of the data residuals involves electric and magnetic
fields, instead of electric fields and voltages. In our derivations it is
not possible to use back-propagated fields, jointly sourced by electric
and magnetic field data residuals, to more efficiently compute the
gradients.

2.3 Back-propagation

To clarify how back-propagation is accomplished in this paper, we
first specify some details on the explicit finite difference time domain
(FDTD) scheme used in the forward modelling problem. From Wang
& Hohmann (1993), electric and magnetic fields arising from an
electric source for example, are in effect advanced with the following
equations:

h(r)n+1/2 = h(r)n−1/2 − 	tn

µ(r)
∇xe(r)n (21)

and

e(r)n+1 =
(

2γ − σ	tn

2γ + σ	tn

)
e(r)n

+
(

2	tn

2γ + σ	tn

)
[∇xh(r)n+1/2 − j(r)n+1/2]. (22)

Here, 	tn denotes the variable time step taken at time tn, where
eq. (21) advances the magnetic field (hn+1/2) to time t n+1/2 and
eq. (22) advances the electric field (en+1) to time t n+1. The variable
γ is a fictitious displacement current term. It is much larger than the
true displacement current, but still small enough to allow accurate
simulation of Maxwell’s equations in the diffusive approximation.
Its incorporation allows for the use of larger time steps than with
a conventional Euler-type scheme applied directly to eqs (3) and
(4) (see Wang & Hohmann 1993 or Chew 1990, for details). As
the fields are advanced, we also increase the size of the time step
in eqs (21) and (22), reducing the computation time required for
field simulation at later times. A simple formula provided by Wang
& Hohmann (1993) can be used to determine the size of the time
step, where we first need to specify the minimum conductivity and
permeability encountered in the modelling problem, along with the
time, tn, where

	tn ∼
√

µminσmintn

6
. (23)

Figure 6. The normalized error functional (eq. 5) is plotted against inver-
sion iteration (dashed curve) for electric field and voltage data. The solid
curve corresponds to the data error component of the normalized error func-
tional.
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12 G. A. Newman and M. Commer

Eq. (23) is designed to preserve the diffusive nature of the fields;
while larger time steps can be taken, because the time stepping
scheme is unconditionally stable, the fields can be affected adversely
by the fictitious displacement current term, displaying erroneous
wave-like properties.

We have already indicated that we use the same FDTD scheme
for back-propagation, because the stability properties of the two
operations, forward- and back-propagation, are the same. Hence the
back-propagated fields in eqs (12) and (13), for example, can be
decremented from

hb(r)n−1/2 = hb(r)n+1/2 + 	tn

µ(r)
∇xeb(r)n

− 	tn

µ(r)

∑
i

[
δh(ri )o

n+1/2 + δh(ri )o
n−1/2

2

]
δ(r − ri )

(24)

Figure 7. Data fits for electric field for the centre profile (Y = 0 m) over the target body in Fig. 5 for six different delay times, ranging from 1 to 50 ms; dotted
curves are the observations and solid curves the predicted data. The figure also shows the corresponding data fit after the first inversion iteration (dashed),
demonstrating the significant improvement in the data fit as the model is iterated.

and

eb(r)n =
(

2γ − σ	tn

2γ + σ	tn

)
eb(r)n+1 −

(
2	tn

2γ + σ	tn

)
∇xhb(r)n+1/2.

(25)

In computing the back-propagated fields with eqs (24) and (25), the
fields are initialized to zero at t = T and the fields are computed
backwards from the point, where the data differences are fed in as
source terms at the receiver locations (starting with the values at
time T). As the fields are back-propagated, the variable time step is
decreased. The initial time step used in back-propagation is calcu-
lated such that the EM field retains its diffusive nature at the latest
observed time and the variable time step decreases, according to
eq. (23) as the simulation time decreases, until time zero is reached.
In carrying out the forward- and back-propagation, the fields are
sampled on a staggered grid, where spatial derivatives in eqs (21),
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(22), (24) and (25) are approximated using finite differences (see
Wang & Hohmann 1993; Commer & Newman 2004, for additional
details).

2.4 Positivity constraints on the gradients

An important constraint on electrical conductivity and magnetic
permeability is that they must be positive quantities. To enforce this
constraint on the inverse solution, we consider a logarithmic trans-
formation, which allows for the incorporation of a lower bounding
constraint on conductivity and permeability at each cell. Let us de-
fine a new parameter, uk , at cell k. This new parameter is related to
the model parameter, mk , which represents either the conductivity
or permeability of the cell by the relation

uk = ln(mk − lbk) (26)

Figure 8. Data fits for voltage for the centre profile (Y = 0 m) over the target body in Fig. 6 for six different delay times, ranging from 1 to 50 ms; dotted
curves are the observations and solid curves the predicted data. The figure also shows the corresponding data fit after the first inversion iteration (dashed).

or

mk = euk + lbk, (27)

where lbk is a lower bounding constraint, such that mk > lbk . The
effect of this log transformation on the corresponding component
of the gradient, sensitive to the data errors, is to scale it by a factor
mk − lbk . Furthermore, the regularized inverse solution will now be
designed to produce smooth estimates of the transformed parame-
ters. Nevertheless, experience shows that we can still expect smooth
reconstructions of conductivity and permeability properties as well
(Newman & Alumbaugh 1997).

2.5 Computation of the gradients

In the actual computation of gradients, special attention is needed
for efficient evaluation of the temporal integrations that are specified
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14 G. A. Newman and M. Commer

in the gradient tables. Hence, during the forward simulation the
TEM fields are extracted on a predefined abscissa raster, which is
calculated from the Gauss–Legendre N-point quadrature formula,
where the number of integration points N is predefined. Selection
of N should be optimized according to some criterion that avoids
over-sampling. On the other hand, the sampling must provide for a
sufficient number of points to avoid undersampling the fields at the
times where rapid variations in the TEM field are to be expected. We
have determined that a higher density of abscissa points at early and
late times on the raster is somewhat advantageous, because during
forward-propagation rapid variations are observed at early times and
during back-propagation stronger variations can be observed at both
early and late times. However, these findings are preliminary and
more investigation is needed for further clarification. Thus, we have
also included the option of storing the forward-propagated fields
at all sampled time points employed in the FDTD scheme (time
sampling based upon eq. 23). While such field sampling significantly
increases the memory needed for storing the forward-propagated
fields, it can be used to determine an optimal quadrature formula
for subsequent production runs. The temporal integration is done
during the back-propagation in order to save memory. As soon as a
point is crossed on the predefined abscissa raster, where the forward-
propagated field is stored, the back-propagated field is multiplied
with the corresponding forward-propagated field and summed up

Figure 9. Illustrated is the reconstructed model after the first inversion iteration. (a) the reconstruction at the surface of the Earth, (b) at 100 m depth, (c) an
x–z cross-section (Y = 0 m) that bisects the transmitter and (d) the y–z cross-section located at X = 300 m. The actual location of the target body is indicated
by the white rectangles. Compare directly with Fig. 5.

either using the Gauss–Legendre N-point quadrature formula or
with a simpler linear quadrature scheme.

2.6 Parallel implementation

Because the computational bottleneck in the 3-D TEM inversion
scheme is the time required for solving the forward- and back-
propagation problems, we have implemented solutions of these
problems, including the entire NLCG iteration, on parallel comput-
ing architectures. An additional advantage to using parallel com-
puting resources is the ability to simulate greater complexity and
realism in the geological modelling of 3-D TEM fields, which can-
not be achieved using serial machines. Details on the implementa-
tion of the parallel 3-D FDTD scheme used to forward- and back-
propagate the fields can be found in the work of Commer & Newman
(2004). Fortunately, parallel implementation of the NLCG itera-
tion introduced above is not difficult. All that is required is global
communication amongst the processors to complete dot products,
and the step length needed in the line search. To facilitate the parallel
implementation of the inversion scheme, we have also written the
algorithm in FORTRAN 90, with dynamic memory allocation, where
interprocessor communication is carried out using the message pass-
ing interface (MPI) (see Gropp et al. 1999). In addition to the MPI
library, we also utilized the AZTEC parallel solver library (Tuminaro
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et al. 1999) for the solving of the forward- and back-propagated DC
field equations.

3 D E M O N S T R AT I O N

3.1 Gradient checks

Gradient checks for electrical conductivity, computed using back-
propagation, have been undertaken and are presented here; we have
not included checks or inversion test examples for the magnetic per-
meability as these checks and examples will follow in a subsequent
publication. In the gradient checks, we consider both magnetic and
electric dipole sources for the crosswell measurement configuration
(Figs 2 and 3). The source (magnetic or electric dipole) is located at

Figure 10. A complex 3-D model used to test the imaging scheme. Shown are (a) the LOTEM transmitter and receiver geometry, (b) the model at 10 m depth,
(c) cross-section of the model at Y = 62.5 m, (d) cross-section of the model at Y = 0 m and (e) cross-section of the model at Y = −100 m.

x = 0 m, y = 0 m and z = 0 m and only a single receiver (magnetic
field, voltage and electric field) located at x = 100 m, y = 0 m and
z = 0 m is considered. Note that the gradient at a fixed cell (cell i)
lying between the transmitter and receiver wells can also be obtained
by perturbing eq. (6),

pγ d
σ (ri ) ≈ ϑ(σ + 	σi , µ) − ϑ(σ, µ)

	σi
, (28)

where d and ri specify the data type and cell-centre location, respec-
tively. Gradients computed with eq. (28) provide a way to check and
compare the gradients computed via back-propagation. Here, we set
λ = 0 to focus the comparisons on the component of the gradient
represented solely by the data errors. The synthesized observed data
used to make the gradient comparisons was created from a 0.2 S m−1
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16 G. A. Newman and M. Commer

whole space, where the back-propagation and perturbation calcula-
tions assumed a 0.1 S m−1 medium as the current model. Figs 2
and 3 compare results for the two computational techniques for the
gradient as percentage difference plots. In these plots, the source
waveform is constant until time zero and is then shut-off assuming a
linear ramp. Note further that the source waveform is zero after 0.1
µs and that the data produced from this source were generated over
the time range of 10 to 100 µs. Away from the transmitter and re-
ceiver well, the comparisons are quite good, within a few per cent as
illustrated in Figs 2 and 3. However, near the receiver and transmitter
wells differences can be as large as 50 per cent, but better agreement
can be obtained by refining the mesh. Fig. 4 demonstrates this claim,
where the number of grid nodes in the vicinity of the receiver well
has been doubled. Now, in comparison with Fig. 2(c), the maximum
percentage difference in the gradients is reduced by nearly a fac-
tor of two from 47 to 27 per cent. Significant improvement is also
observed for all image points along the receiver well.

3.2 LOTEM exploration problems

3.2.1 Simple model

The inversion algorithm is now applied to the LOTEM measurement
configuration, thereby demonstrating its capability in inverting non-
causal field measurements of electric field and voltage, sourced by
a grounded wire. The data were generated using a spectral Lanczos
scheme (Druskin & Knizhnerman 1994) for a 1 S m−1 prismatic
body embedded in a 0.1 S m−1 half-space (a drawing of the model
is shown at the top of Fig. 5). The lateral dimensions of the body are
200 m in both the east–west (X ) direction and north–south (Y ) direc-
tion, where this latter direction also corresponds to the orientation of
the 80-m-long LOTEM transmitter. The body depth extent and depth
of burial are 140 and 60 m, respectively. At the surface of the Earth,
a receiver grid of 99 detectors is located over the body (Fig. 5a);
the centre of the buried body would project to the coordinate pair
(X = 300 m, Y = 0 m) on the receiver grid. The data comprise the
y-directed electric field and vertical voltage, uz = −µcoil∂hz/∂t ,
over the time range of 0.5 to 70 ms. These data are sampled at 90
delay times and the transmitter waveform is a shut-off in a stepwise
fashion. We did not add any Gaussian noise to the data. That is not to
say that the data are noise free, because numerical noise is present.
The numerical noise, which we determined to be approximately sev-
eral per cent, is quantified by the difference between the synthetic
data produced from the two different modelling codes for the exact
model.

Because the air is present in the model, new complications arise.
In the presence of the air–earth interface, there are some disad-
vantages with an explicit FDTD scheme used to forward- and back-
propagate the fields in our inversion scheme. Meshing of the air must
be avoided for computational efficiency, otherwise extremely small
time steps are required to insure stability. In the FDTD scheme,
this is accomplished by imposing an upward continuation condi-
tion on the vertical magnetic fields or their time derivatives at the
earth surface (see Commer & Newman 2004, for details). This up-
ward continuation is actually carried out using a 2-D fast Fourier
transform (FFT), but has several drawbacks. First is the assumption
that the air–earth interface is flat and exhibits no topographic vari-
ations. The second is that the 2-D FFT does not parallelize as well
as other parts of the FDTD solution and this impacts on the overall
time efficiency of the algorithm and consequently the correspond-
ing solution efficiency of the inverse problem. Fortunately, one can

avoid using the FFT in the forward- and back-propagation of the
fields by modelling the air as a finite resistive medium, provided
that the medium is not too resistive and the time step required is
not too small. Using a time step of 1e − 6 s, we determined that
the air layer present in the model could be replaced with an insu-
lating 0.0002 S m−1 medium, over the time range of the synthetic
field measurements (0.5 to 70 ms). Such an approximation also al-
lows one to incorporate topography in the modelling and improves
with increasing delay time. However, it can be quite poor at early
times. Hence, it is essential that the approximation be validated be-
fore inverting field data in the presence of an air–earth interface.
It is also possible to circumvent these problems by reverting to an
implicit-type method in the forward- and back-propagation of the
fields (Haber et al. 2004). Such a scheme has advantages. It allows
the use of significantly larger time steps, compared with an explicit
scheme and the air can be meshed directly, which also allows for
the incorporation of topography in the model. A disadvantage of an
implicit scheme, however, is that at every time step a large linear
system must be solved and this is time consuming. Future research
will determine the optimal solution method for the 3-D TEM field
simulation in terms of flexibility, speed and robustness.

Using 336 processors on the Sandia National Laboratory ASCII
RED machine (Sandia National Laboratory, Albuquerque, NM), we
jointly inverted the simulated electric field and voltage data with a
two-layered starting model, where the 0.0002 S m−1 medium de-
notes the air, which is fixed in the inversion process, and 0.1 S m−1

the Earth. The trade-off parameter was fixed at unity. We also used
data weighting based on 5 per cent of the observed measurements
at each detector location and delay time, in order to more easily
quantify the quality of the data fit. Thus, fitting the normalized data
error (eq. 5) to one implies that we have matched the observations
to approximately 5 per cent, provided the noise present in the data
satisfies a Gaussian distribution. Because the actual noise in the data
is non-Gaussian, a better measure for quantifying the data fit is to
compute eq. (5) using the predicted data for the exact model, which

Figure 11. The normalized error functional (eq. 5) is plotted against in-
version iteration (dashed curve) for electric field and voltage data. The solid
curve corresponds to the data error component of the normalized error func-
tional.
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we have also done. After 87 inversion iterations, where each iterate
required slightly more than 5 hr, we have decreased the normalized
error functional based upon eq. (5) (dashed curve) from an initial
value of 38 to 0.3 and the corresponding data error measure (solid
curve) from 38 to 0.176 (Fig. 6). When the exact model is simulated,
the data error is given as 0.126, which corresponds to fitting the ob-
served data to approximately 5 per cent on average. Figs 7 and 8
show the data fits for electric field and voltage for the centre profile
(Y = 0 m) over the target body for six different delay times, ranging
from 1 to 50 ms. These figures also show the corresponding data
fits after the first inversion iteration, demonstrating the significant
improvement in the data fits as the model is iterated.

We have located the body fairly well (see plots b, c and d of Fig. 5).
Moreover the reconstructed conductivity within the top parts of the
imaged body, approaches the true value of 1 S m−1. Fig. 9 shows
the corresponding reconstructions after the first inversion iteration,
which also corresponds to the migration of the initial data errors into
the model (Zhdanov & Portniaguine 1997). These images do not in-
dicate the target body, where changes from the half-space starting
model are quite modest and seen in the near-surface beneath the
transmitter. In this example, migration, without iteration, is not an
effective imaging strategy. Wang et al. (1994) observed similar find-
ings for 2-D cross-well problems, where rapid decrease in the data
misfit at the early inversion iterations produced minor changes in
the starting model. Increased model enhancement was seen starting
only at the later iterations. However, if the gradients can be suitably
preconditioned to allow for a much greater reduction in the error
functional at the first inversion iteration, then migration may pro-
vide better results. This point will be discussed in more detail in the
concluding section of the paper.

3.2.2 Complex model

A more complex example is now presented in Fig. 10. The model
consists of two near-surface bodies, one resistive (0.005 S m−1) and
the other conductive (0.05 S m−1), embedded in a 0.01 S m−1 half-
space. A deeper, dipping body (0.1 S m−1) is also present. Data for
this model were also generated using the spectral Lanczos scheme
(Druskin & Knizhnerman 1994) for the receiver array shown in the
figure. When the FDTD scheme is used to compute the predicted
response of the model, we observed the differences in the calculated
responses from the two modelling codes to be within 10 per cent,
which we denote as the error to which we will attempt to fit the data;
no additional noise was added to the data. The data comprise the
y-directed electric field and vertical voltage, uz = − µcoil∂hz/∂t ,
over the time range of 0.1 to 10 ms. The 286 detectors shown in
Fig. 10(a) are not located on a uniform 2-D receiver grid, which is
typical with field deployments because some regions of a survey
area are often inaccessible for measurements as a result of a variety
of logistical reasons. We jointly inverted the simulated electric field
and voltage data with a two-layered starting model, where a 0.0002 S
m−1 medium denotes the air and 0.01 S m−1 the Earth. The trade-off
parameter again was fixed at unity.

After 65 inversion iterations, where each iteration required
slightly more than 8 hr using 336 processors, we have decreased
the normalized error functional based upon eq. (5) (dashed curve)
from an initial value of 10.5 to 0.168 and the corresponding data
error measures (solid curve) from 10.5 to 0.115 (Fig. 11). When
the exact model is simulated the data error is given by 0.137, which
implies we are fitting the observed data in the range of the antici-
pated errors. Figs 12 and 13 show the data fits for electric field and
voltage over three selected profiles (Y = 81, −12, −81 m) for eight

different delay times, ranging from 0.1 to 10 ms. The voltage data
plots at the latest delay time (5 ms) also illustrate some of the noise
in the numerically generated observations. The noise was so large
that parts of the voltage observations along the data profile were not
used in the inversion. This noise behavior in the late time data is
also typical of actual TEM field measurements.

The reconstructed images shown in Fig. 14 have clearly located
both the near-surface resistive and conductive structures. Here, we
note the variation in the finite difference mesh over the two near-
surface structures. Justification for varying the mesh is based on
the rapid spatial variation in the observations over the near-surface
bodies and allows for faster computation of the gradients and pre-
dicted data; we have also varied the meshing with depth to reflect
the reduction in the resolving power of the data with increasing
depth. The deeper conductor is also imaged and its dip is indicated.
However, the deeper section of this body is not imaged well, most
likely as a result of a lack of resolving power in the data and conduc-
tive shielding from the near-surface conductor. Nevertheless, these
reconstructions clearly show the ability of our 3-D TEM inversion
code to image complex structures. Furthermore, reconstructions af-
ter the first inversion iteration do not indicate the three target bodies,
where changes from the half-space starting model are minimal. As
in the previous example, without iteration or preconditioning, mi-
gration is not an effective imaging strategy.

4 C O N C L U S I O N S A N D S U G G E S T I O N S
F O R F U T U R E S T U D I E S

In this paper, we have presented a new scheme for the inversion
of non-causal 3-D TEM fields. Our scheme employs NLCG search
for minimization of the error functional and the concept of back-
propagation, developed from previous works, to efficiently evaluate
the gradients. Treatment of electric, magnetic and voltage measure-
ment types has been given. In the course of developing our scheme,
we have also corrected an error in the original gradient derivations of
Wang et al. (1994) for magnetic field data and successfully demon-
strated the scheme on 3-D exploration problems for the LOTEM
measurement configuration. The next logical step will be to demon-
strate the 3-D inversion scheme on field data.

It is clear that faster solutions to the forward problem as well as
more powerful optimization strategies would be beneficial in solving
the 3-D TEM inverse problem. We adopted a gradient search method
for the iterative solution process because it limits the amount of
forward modelling overhead, but this comes at the expense of slow
convergence. While Newton methods will converge in far fewer iter-
ations, the time required per inversion iteration can be prohibitively
expensive. A more promising approach would be the use of an ap-
proximate preconditioner, that when applied to the conjugate gradi-
ent search direction, becomes an approximation to the Newton di-
rection. We refer the interested reader to Newman & Boggs (2004),
where the technique is demonstrated for a 3-D EM inverse problem
for frequency domain data.

Another approach in accelerating convergence is to consider
quasi-Newton methods. These methods use error functional gra-
dients at the current and prior inversion iterations to construct an
approximate Hessian or its corresponding inverse. As the iteration
procedure continues, the approximation continues to improve in
principle, converging to the true Hessian or its inverse at the func-
tional minimum. These methods can be seen as extensions of the
conjugate gradient method, in which additional storage is used to
accelerate convergence; they also require a line search procedure.
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Figure 12. Data fits for electric field along selected profiles at the 65th inversion iteration for eight different delay times. Circles depict the predicted data and
the solid lines the observations at Y = 81 m, boxes depict the predicted data and the dotted lines the observations at Y = −12 m, and pluses depict the predicted
data and dashed lines the observations at Y = −81 m.

C© 2004 RAS, GJI, 160, 5–32
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Figure 13. Data fits for voltage along selected profiles at the 65th inversion iteration for eight different delay times. Circles depict the predicted data and the
solid lines the observations at Y = 81 m, boxes depict the predicted data and the dotted lines the observations at Y = −12 m, and pluses depict the predicted
data and dashed lines the observations at Y = −81 m.
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Figure 14. Shown are sections of the reconstructed conductivity model. (a) at the surface of the Earth, (b) at 10 m depth, (c) at Y = 62.5 m, (d) at Y =
0 m, which bisects the transmitter an (e) at Y = −100 m. The actual locations of the target bodies are indicated by the white rectangles. Compare directly with
Fig. 10.

Unfortunately in large-scale inverse problems, the quasi-Newton
methods are not that practical as a result of excessive storage re-
quirements. This problem can be avoided by implementing a limited
memory variant of the scheme (cf. Liu & Nocedal 1989). In a limited
memory quasi-Newton scheme, the Hessian or its inverse are never
formed explicitly as this would require too much storage, but rather
i + 1 previous values for functional gradients and model updates
(i is specified by the user) are stored as vectors, and efficiently
used to construct matrix–vector products involving the Hessian,
needed to obtain the next model update. These methods can also
be further accelerated using preconditioning techniques previously
described.
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A P P E N D I X A : DYA D I C G R E E N F U N C T I O N S F O R E L E C T RO M A G N E T I C
I N D U C T I O N

In the quasi-static limit, solutions of Maxwell’s eqs (3) and (4) can be expressed using dyadic Green functions for non-causal sources as

e(r, t) =
∫

v′

∫ t

−∞
G11(r, t |r′, t ′) · j(r′, t ′) dt ′dr′ +

∫
v′

∫ t

−∞

G12(r, t |r′, t ′)
µ(r′)

· m(r′, t ′) dt ′dr′

(A1)

and

h(r, t) =
∫

v′

∫ t

−∞
G21(r, t |r′, t ′) · j(r′, t ′) dt ′dr′ +

∫
v′

∫ t

−∞

G22(r, t |r′, t ′)
µ(r′)

· m(r′, t ′) dt ′dr′,
(A2)

where (v, t) is the space–time domain over which the sources act. Here j denotes the electric source current and m the magnetic source current,
which is equivalent to

m(r, t) = µ(r)∂mp(r, t)/∂t. (A3)

The magnetization vector, m p(r, t), can be regarded as an integrated surface current (Ward & Hohmann 1988).
The meaning of each Green dyadic is interpreted, for example, as follows: if x̂ and ẑ are unit vectors in the x and z directions, then

x̂ · G21(r, t |r′, t ′) · ẑ is the x component of the magnetic field at point r and time t caused by an impulsive electric current (an electric dipole)
oriented in the z direction at point r′ and t ′. In analogous fashion x̂ · G12(r, t |r′, t ′) · ẑ is the x component of the electric field at point r and
time t caused by an impulsive magnetic current (a magnetic dipole) oriented in the z direction at point r′ and t ′.

The four dyadics satisfy the following first-order equations (ζ is the identity dyadic),

σG11 − ∇xG21 = −ζ δ(r − r′)δ(t − t ′), (A4)

∇xG11 + µ∂G21/∂t = 0, (A5)

σG12 − ∇xG22 = 0, (A6)

∇xG12 + µ∂G22/∂t = −ζ δ(r − r′)µ(r)δ(t − t ′) (A7)

and are causal,

Gi j (r, t |r′, t ′) ≡ 0, t ≤ t ′. (A8)

Eqs (A6) and (A7) give the EM fields arising for magnetic dipole source, where the time dependence of the magnetization for the dipole is
based upon a Heavyside step function: u(t) = { 1; t≥0

0; t<0 } and when time differentiated in eq. (A3) this produces the delta function response in
time in eq. (A7). Also needed are the adjoint Green dyadics G+

i j , which are obtained from eqs (A4)–(A7) by reversing the sign of all space–time
coordinates (Felsen & Marcuvitz 1973),

σG+
11 + ∇xG+

21 = −ζ δ(r − r′)δ(t − t ′), (A9)

−∇xG+
11 − µ∂G+

21/∂t = 0, (A10)

σG+
12 + ∇xG+

22 = 0, (A11)

−∇xG+
12 − µ∂G+

22/∂t = −ζ δ(r − r′)µ(r)δ(t − t ′) (A12)

and are anticausal,

G+
i j (r, t |r′, t ′) ≡ 0, t ≥ t ′. (A13)

A1 Reciprocal relationships of the Dyadic Green Functions

At this point, it needs to be emphasized that both Gi j and G+
i j always propagate the impulse response of a field. Care must be taken when

specifying the reciprocal relationships between the various dyadic Green functions and the corresponding adjoint forms when i 
= j , which
involves the reciprocity relationship between the electric field impulse response of a magnetic dipole and vice versa, the magnetic field impulse
response of an electric dipole. It can be shown (Hördt 1998) that the magnetic field impulse response for the electric dipole is equivalent
to the electric field step response for a magnetic dipole. This is a critical point not taken into account in the Wang et al. (1994) gradient
specifications, leading to incorrect results for gradients involving magnetic field data types. As an example, the magnetic field gradient for
conductivity will ultimately involve a back-propagated electric field step response, while in Wang et al. (1994), it is incorrectly specified using
a back-propagated electric field. It turns out however, that the two types of back-propagated fields are related to each other through a simple
time differentiation. The authors did not recognize the problem, because they presented synthetic conductivity inversion examples for electric
field data, where the gradients for this data type were correctly specified.
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The correct reciprocal relationships between the Green dyadics and their corresponding adjoints are as follows:

G+
11(r′, t ′|r, t) = G̃11(r, t |r′, t ′), (A14)

G+
12(r′, t ′|r, t) = −µ(r)

∂G̃21(r, t |r′, t ′)
∂t

, (A15)

µ(r′)
∂G+

21(r′, t ′|r, t)

∂t ′ = G̃12(r, t |r′, t ′), (A16)

µ(r′)G+
22(r′, t ′|r, t) = µ(r)G̃22(r, t |r′, t ′). (A17)

Here, the tilde (∼) indicates the transpose of a dyadic (e.g. x̂ · G11 · ẑ = ẑ · G̃11 · x̂). In order to make eqs (A15) and (A16) dimensionally
consistent, it is understood that units of seconds (s) or its inverse (s−1) must be introduced to the left hand side of these equations, because
equivalent quantities do not necessarily have the same units or dimensions. We note that Felsen & Marcuvitz (1973, pp. 9–14) have shown
how to rigorously derive reciprocity relations for the tensor Green’s functions in a vacuum. Eqs (A14) to (A17) represent an extension of
their derivation for treatment of lossy media in the quasi-static limit (no displacement currents) that incorporates the correct description of
the magnetic source current given by eq. (A3). It is important to note that eq. (A16) is similar to eq. (A15), except for the sign change, which
is required because the field evolves in reverse time, starting at time t.

When eq. (A15) is integrated over time t and eq. (A16) over time t ′, it follows

stepG+
12(r′, t ′|r, t) = µ(r)G̃21(r, t |r′, t ′), (A18)

−µ(r)G+
21(r′, t ′|r, t) = stepG̃12(r, t |r′, t ′), (A19)

where,

stepG+
12(r′, t ′|r, t) =

∫ t ′

t
dtG+

12(r′, t ′|r, t), (A20)

stepG̃12(r, t |r′, t ′) =
∫ t

t ′
dt ′G̃12(r, t |r′, t ′). (A21)

A P P E N D I X B : G R A D I E N T S P E C I F I C AT I O N F O R E L E C T R I C F I E L D DATA

To make the derivation that follows more manageable, we first consider the problem for a single-source excitation and drop the dependence
on source excitation, s j . When the derivation is complete for this problem, it is easy to extend the gradient for multiple source locations
using superposition of the gradients for different source excitations. We will proceed similarly for gradient derivations involving voltage and
magnetic field data in Appendices C and D.

For small model perturbations, one can use eq. (1) for electric field data to show that

δϑ(σ, µ) = −
∑

i

∫ T

0

dt

t
δeo(ri , t) · δe(ri , t), (B1)

where δe is the change in the calculated electric field data when the conductivity and permeability are changed. Now for small perturbations
δσ (r′) and δµ(r′) about the current model, the change in the error functional can also be written as

δϑ(σ, µ) = ϑ(σ + δσ, µ + δµ) − ϑ(σ, µ) ≈ 〈γσ , δσ 〉 + 〈γµ, δµ〉, (B2)

because the gradients are Fréchet derivatives of the error functional γ σ = δϑ(σ , µ)/δσ and γ µ = δϑ(σ , µ)/δµ. In eq. (B2) the inner product
is defined as

〈γ, δm〉 =
∫

v′
γ (r′)δm(r′) dr′, (B3)

where δm stands for either δσ or δµ and v′ is the domain which the model is allowed to vary.
If we perturb the fields and model in Maxwell’s equations (eqs 3 and 4), where

σ → σ + δσ,

µ → µ + δµ,

h → h + δh,

e → e + δe,
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and subtract the Maxwell’s equations for the non-perturbed state, then dropping terms involving the product of two perturbed quantities gives

σδe − ∇xδh = −δσe (B4)

and

∇xδe + µ∂δh/∂t = −δµ
∂

∂t
h. (B5)

The solution to the perturbed electric field is given as

δe(r, t) =
∫

v′

∫ t

−∞
G11(r, t |r′, t ′) · e(r′, t ′)δσ (r′) dt ′dr′

+
∫

v′

∫ t

−∞

G12(r, t |r′, t ′)
µ(r′)

· ∂

∂t ′ h(r′, t ′)δµ(r′) dt ′dr′.
(B6)

Substituting eq. (B6) into eq. (B1) and noting eqs (B2) and (B3) yields

γ e
σ (r′) = −

∑
i

∫ T

0

dt

t
δeo(ri , t)

∫ t

−∞
dt ′G11(ri , t |r′, t ′)e(r′, t ′)

(B7)

and

γ e
µ(r′) = −

∑
i

∫ T

0

dt

t
δeo(ri , t)

∫ t

0
dt ′ G12(ri , t |r′, t ′)

µ(r′)
∂

∂t ′ h(r′, t ′). (B8)

The gradients γ e
σ (r′) and γ e

µ(r′) at a model point r′ correspond to partial derivatives of the error functional (σ , µ) with respect to the conductivity
and permeability at that point. Thus, for example, eq. (B7) indicates that the partial derivative of (σ , µ) with respect to the conductivity at r′

is obtained by correlating the electric-field errors δeo at all measurement points with the electric field caused by a point electric dipole current
source at r′ that has the same direction and the same time dependence as the electric field at r′ in the current model.

Wang et al. (1994) remark that eqs (B7) and (B8) require one forward simulation to compute the fields in the current model and many more
forward simulations as there are image points to compute the gradients and this quickly becomes impractical as the number of image points
becomes large. They also showed how to put these equations into an efficient form for computation of the gradients by reversing the order of
the time integrations and using adjoint dyadics, where

γ e
σ (r′) = −

∑
i

∫ T

0
dt

δeo(ri , t)

t

∫ t

−∞
dt ′G11(ri , t |r′, t ′)e(r′, t ′)

= −
∑

i

∫ T

−∞
dt ′

∫ T

t ′

δeo(ri , t)

t
G11(ri , t |r′, t ′)e(r′, t ′)dt

= −
∑

i

∫ T

−∞
dt ′

∫ T

t ′
e(r′, t ′)G+

11(r′, t ′|ri , t)
δeo(ri , t)

t
dt

=
∫ T

−∞
dt ′e(r′, t ′) ·

∑
i

∫ t ′

T
dtG+

11(r′, t ′|ri , t)
δeo(ri , t)

t

=
∫ T

−∞
dt ′e(r′, t ′) · eb(r′, t ′|δeo). (B9)

Eq. (B9) uses the reciprocity relationship in eq. (A14) in the form of

e(r′, t ′) · G+
11(r′, t ′|ri , t) · δeo(ri , t)

t
= δeo(ri , t)

t
· G11(ri , t |r′, t ′) · e(r′, t ′) (B10)

and defines a back-propagated field, where

eb(r′, t ′|δeo) =
∑

i

∫ t ′

T
dtG+

11(r′, t ′|ri , t)
δeo(ri , t)

t
. (B11)

Because t ′ < t in the above integral, it has the correct form for propagation with the adjoint Green dyadic G+
11(r′, t ′|ri , t). This dyadic gives

the electric field at r′ and t ′ caused by an electric current source (here ∂eo) radiating at ri at a later time t. The reversal of the time order is
implicit in the definition of the adjoint Green dyadics, because they are anticausal.
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Using a similar series of steps for the magnetic permeability gradient we have

γ e
µ(r′) = −

∑
i

∫ T

0
dt

δeo(ri , t)

t

∫ t

0
dt ′ G12(ri , t |r′, t ′)

µ(r′)
∂

∂t ′ h(r′, t ′)

= −
∑

i

∫ T

0
dt ′

∫ T

t ′

δeo(ri , t)

t

G12(ri , t |r′, t ′)
µ(r′)

∂

∂t ′ h(r′, t ′) dt

=
∫ T

0
dt ′ ∂

∂t ′ h(r′, t ′) ·
∑

i

∫ t ′

T
dt

∂

∂t ′ G+
21(r′, t ′|ri , t)

δeo(ri , t)

t

=
∫ T

0
dt ′ ∂

∂t ′ h(r′, t ′) · ∂

∂t ′ hb(r′, t ′|δeo). (B12)

In deriving eq. (B12), we also defined a back-propagated magnetic field

hb(r′, t ′|δeo) =
∑

i

∫ t ′

T
dtG+

21(r′, t ′|ri , t)
δeo(ri , t)

t
(B13)

and employed the reciprocity relationship based upon eq. (A16),

∂

∂t ′ h(r′, t ′) · ∂

∂t ′ G+
21(r′, t ′|ri , t) · δeo(ri , t)

t
= δeo(ri , t)

t
· G12(ri , t |r′, t ′)

µ(r′)
· ∂

∂t ′ h(r′, t ′). (B14)

Because the back-propagated fields in eqs (B11) and (B13) are based upon the adjoint dyadics G+
11(r′, t ′|ri , t) and G+

21(r′, t ′|ri , t), this implies
that the back-propagated fields eband hb satisfy the adjoint Maxwell equations that are sourced using the data differences δeo at all the receiver
positions radiating as electrical current sources in reverse time; that is

σeb + ∇xhb = −
∑

i

δeo(ri , t)

t
δ(r − ri ), (B15)

∇xeb + µ∂hb/∂t = 0, (B16)

from time t = T to −∞. These equations follow directly from eqs (A9) and (A10), (B11) and (B13).
A significant disadvantage of eq. (B9) is the requirement that the back-propagated fields in eqs (B15) and (B16) be computed before time

0. Here, it is computationally convenient to reformulate the gradient in eq. (B9), such that

γ e
σ (r′) =

∫ T

0
dt ′{e(r′, t ′) − eDC(r′)} · eb(r′, t ′|δeo) + eDC(r′) ·

∫ T

−∞
dt ′eb(r′, t ′|δeo), (B17)

where the DC electric field, eDC(r′) = e(r′, t ′) when t ′ ≤ 0, is determined by solving the Maxwell equations (eqs 3 and 4) in the steady state
limit. Now the last term in eq. (B17) suggests that we integrate the eqs (B15) and (B16),

σ

∫ T

−∞
dteb + ∇x

∫ T

−∞
dthb = −

∑
i

∫ T

0
dt

δeo(ri , t)

t
δ(r − ri )

(B18)

and

−∇x

∫ T

−∞
dteb − µo

∫ T

−∞
dt∂hb/∂t = 0. (B19)

We have truncated the integration in the source term to − ∑
i

∫ T
0 dt δeo(ri ,t)

t δ(r − ri ), because δeo(ri , t) = 0 for t < 0. Thus the integrated
back-propagated fields simplify to

σeDC
b + ∇xhDC

b = −
∑

i

∫ T

0
dt

δeo(ri , t)

t
δ(r − ri ), (B20)

∇xeDC
b = 0, (B21)

because hb(t = T ) = 0 as well as hb(t = −∞) = 0. Note the following definitions used in the integrated back-propagated field equations:
eDC

b = ∫ T
−∞ dteb and hDC

b = ∫ T
−∞ dthb. Inspection of the integrated back-propagated electric field shows that it can be obtained from the

gradient of a scalar potential because ∇xeDC
b = 0. Thus, we may set ∇θ b = eDC

b and apply the divergence operator in eq. (B20) and then solve

∇ · σ∇θb = −∇ ·
∑

i

∫ T

0
dt

δeo(ri , t)

t
δ(r − ri ). (B22)

Hence the gradient in eq. (B17) is computed by using the back propagation eqs (B15) and (B16) in order to determine eb(r′, t ′| δeo) and hb(r′,
t ′| δeo) over the time range T to 0, as well as solving Possion’s equation (eq. B22) to obtain eDC

b (r′| δeo).
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For numerical accuracy, we prefer to express the gradient in eq. (B17) as

γ e
σ (r′) =

∫ T

0
dt ′e(r′, t ′) · eb(r′, t ′|δeo) − eDC(r′) ·

∫ T

0
dt ′eb(r′, t ′|δeo)

+ eDC(r′) · eDC
b (r′|δeo). (B23)

If eq. (B23) is used to evaluate the gradient, it is also necessary to integrate the back-propagated electric field,
∫ T

0 dt ′eb(r′, t ′|δeo). This integral
can easily be calculated as a by-product during back-propagation of the electric field. We note that it is also possible to eliminate this integration
by expressing eq. (B23) as

γ e
σ (r′) = −

∫ T

0
dt ′eon(r′, t ′) · eb(r′, t ′|δeo) + eDC(r′) · eDC

b (r′|δeo). (B24)

Here, eon(r′, t ′) = eDC(r′) − e(r′, t ′) is the corresponding turn-on waveform, which is causal. Nevertheless, eq. (B23) is favoured over
eq. (B24) because subtractive cancellation could lead to a loss of accuracy in eon(r′, t ′) at early times. We also note that equation (B23) reverts
back to the causal form when eDC(r′) is set to zero.

A P P E N D I X C : G R A D I E N T S P E C I F I C AT I O N F O R V O LTA G E - T Y P E ( - db/dt) DATA

Differentiating eqs (B4) and (B5) with respect to time yields

σ∂δe/∂t − ∇x∂δh/∂t = −δσ∂e/∂t, (C1)

∇x∂δe/∂t + µ∂{∂δh/∂t}/∂t = −δµ
∂2

∂t2
h (C2)

and thus the perturbed time derivative of the magnetic field satisfies

∂δh(ri , t)/∂t =
∫

v′

∫ t

0
G21(ri , t |r′, t ′)

∂e(r′, t ′)
∂t ′ δσ (r′) dt ′dr′

+
∫

v′

∫ t

0

G22(ri , t |r′, t ′)
µ(r′)

∂2h(r′, t ′)
∂t ′ 2

δµ(r′) dt ′dr′. (C3)

The temporal integrations begin at time zero because the incident electric and magnetic fields are at steady state for t < 0. The perturbed
voltage follows immediately by scaling eq. (C3) by − µ(ri ). Thus

δu(ri , t) =
∫

v′

∫ t

0
−µ(ri )G21(ri , t |r′, t ′)

∂e(r′, t ′)
∂t ′ δσ (r′) dt ′dr′

+
∫

v′

∫ t

0
−µ(ri )

µ(r′)
G22(ri , t |r′, t ′)

∂2h(r′, t ′)
∂t ′ 2

δµ(r′) dt ′dr′, (C4)

where δu(ri , t) = − µ (ri ) δh(ri , t)/∂t . When the first term in eq. (C4) is integrated by parts involving the integration variable t ′, we find

δu(ri , t) =
∫

v′

∫ t

0
−µ(ri )

∂G21(ri , t |r′, t ′)
∂t

{e(r′, t ′) − eDC(r′)}δσ (r′)dt ′dr′ +
∫

v′

∫ t

0
−µ(ri )

µ(r′)
G22(ri , t |r′, t ′)

∂2h(r′, t ′)
∂t ′ 2

δµ(r′)dt ′dr′, (C5)

where the identity ∂

∂t ′ G21 = − ∂

∂t G21 has been employed. We now follow a similar development discussed in Appendix B for electric field
data. The voltage gradients for the conductivity and magnetic permeability are first written as

γ u
σ (r′) =

∑
i

∫ T

0
dt

δuo(ri , t)

t

∫ t

0
dt ′µ(ri )

∂G21(ri , t |r′, t ′)
∂t

{e(r′, t ′) − eDC(r′)} (C6)

and

γ u
µ (r′) =

∑
i

∫ T

0
dt

δuo(ri , t)

t

∫ t

0
dt ′ µ(ri )

µ(r′)
G22(ri , t |r′, t ′)

∂2h(r′, t ′)
∂t ′ 2

. (C7)
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3-D transient electromagnetic inversion 27

Next, using reciprocity relations found in eqs (A15) and (A17), which involve adjoint dyadic Green’s functions, we express the gradients in
the more computationally efficient forms, where

γ u
σ (r′) =

∑
i

∫ T

0
dt

δuo(ri , t)

t

∫ t

0
dt ′µ(ri )

∂G21(ri , t |r′, t ′)
∂t

{e(r′, t ′) − eDC(r′)}

=
∑

i

∫ T

0
dt ′

∫ T

t ′

δuo(ri , t)

t
µ(ri )

∂G21(ri , t |r′, t ′)
∂t

{e(r′, t ′) − eDC(r′)} dt

= −
∑

i

∫ T

0
dt ′

∫ T

t ′
{e(r′, t ′) − eDC(r′)}G+

12(r′, t ′|ri , t)
δuo(ri , t)

t
dt

=
∫ T

0
dt ′{e(r′, t ′) − eDC(r′)} ·

∑
i

∫ t ′

T
dtG+

12(r′, t ′|ri , t)
δuo(ri , t)

t

=
∫ T

0
dt ′e(r′, t ′) · eb(r′, t ′|δuo) − eDC(r′) ·

∫ T

0
dt ′eb(r′, t ′|δuo) (C8)

and

γ u
µ (r′) =

∑
i

∫ T

0
dt

δuo(ri , t)

t

∫ t

0
dt ′ µ(ri )

µ(r′)
G22(ri , t |r′, t ′)

∂2h(r′, t ′)
∂t ′ 2

=
∑

i

∫ T

0
dt ′

∫ T

t ′

δuo(ri , t)

t

µ(ri )

µ(r′)
G22(ri , t |r′, t ′)

∂2h(r′, t ′)
∂t ′ 2

dt

=
∑

i

∫ T

0
dt ′

∫ T

t ′

∂2h(r′, t ′)
∂t ′ 2

G+
22(r′, t ′|ri , t)

δuo(ri , t)

t
dt

= −
∫ T

0
dt ′ ∂

2h(r′, t ′)
∂t ′ 2

·
∑

i

∫ t ′

T
dtG+

22(r′, t ′|ri , t)
δuo(ri , t)

t

= −
∫ T

0
dt ′ ∂2

∂t ′ 2
h(r′, t ′) · hb(r′, t ′|δuo)

=
∫ T

0
dt ′ ∂h(r′, t ′)

∂t ′ · ∂hb(r′, t ′|δuo)

∂t ′ ,

(C9)

where we have assumed that ∂h(r′,0)
∂t ′ = 0 and hb(r′, T |δuo) = 0. In eqs (C8) and (C9) we have defined the following back-propagated electric

and magnetic fields,

eb(r′, t ′|δuo) =
∑

i

∫ t ′

T
dtG+

12(r′, t ′|ri , t)
δuo(ri , t)

t
(C10)

and

hb(r′, t ′|δuo) =
∑

i

∫ t ′

T
dtG+

22(r′, t ′|ri , t)
δuo(ri , t)

t
. (C11)

Using eqs (A11) and (A12), the back-propagated fields in eqs (C10) and (C11) can be shown to satisfy the adjoint Maxwell equations,

σeb + ∇xhb = 0, (C12)

−∇xeb − µ∂hb/∂t = −
∑

i

µ(ri )
δuo(ri , t)

t
δ(r − ri ), (C13)

over the time range T to 0 in reverse time.

A P P E N D I X D : G R A D I E N T S P E C I F I C AT I O N F O R M A G N E T I C F I E L D DATA

The perturbed magnetic field arising from a turn-off of a steady state source current at time zero is related to the corresponding field arising
from a turn on of the source current, by the relationship δhoff(ri , t) = δhDC(ri ) − δhon(ri , t), where δhDC(ri ) is the perturbed DC field, both
in conductivity and permeability, present before shut-off. Thus, we can express the perturbed field, δhoff(ri t), as

δhoff(ri , t) = δhσ
DC(ri ) −

∫
v′

dr′
∫ t

0
G21(ri , t |r′, t ′)eon(r′, t ′)δσ (r′) dt ′

+ δhµ

DC(ri ) −
∫

v′
dr′

∫ t

0

G22(ri , t |r′, t ′)
µ(r′)

∂hon(r′, t ′)
∂t ′ δµ(r′) dt ′. (D1)

The vector functions, δhσ
DC(ri ) and δhµ

DC(ri ), represent components of the perturbed DC magnetic field, δhDC(ri ), that arise from electrical
conductivity and magnetic permeability variations within the earth; these quantities will be specified shortly. However, it is important to
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28 G. A. Newman and M. Commer

observe now that δhµ

DC(ri ) will be in the null space of the perturbation eqs (B4) and (B5) because it arises at steady state and is curl-free.
It must be curl-free because this field has no influence on the electric fields at DC or steady state; the DC electric field is sensitive only to
variations in electric conductivity. Furthermore, because the field is curl-free, it can also be represented by a gradient of a scalar potential.

Because eon(r′, t ′) = eDC(r′) − eoff(r′, t ′) and ∂

∂t ′ h
on(r′, t ′) = − ∂

∂t ′ h
off(r′, t ′), we can also express eq. (D1) as

δhoff(ri , t) = δhσ

DC
(ri ) +

∫
v′

dr′
∫ t

0
G21(ri , t |r′, t ′){eoff(r′, t ′) − eDC(r′)}δσ (r′) dt ′

+δhµ

DC
(ri ) +

∫
v′

dr′
∫ t

0

G22(ri , t |r′, t ′)
µ(r′)

∂hoff(r′, t ′)
∂t ′ δµ(r′) dt ′. (D2)

Hence, using eqs (B1), (B2) and (B3) for magnetic field data, the gradients can be expressed for conductivity as

γ h
σ (r′) = −

∑
i

∫ T

0
dt

δho(ri , t)

t
δhσ

DC
(ri , r′)

−
∑

i

∫ T

0
dt

δho(ri , t)

t

∫ t

0
dt ′G21(ri , t |r′, t ′){e(r′, t ′) − eDC(r′)} (D3)

and for the magnetic permeability as

γ h
µ (r′) = −

∑
i

∫ T

0
dt

δho(ri , t)

t
δhµ

DC
(ri , r′)

−
∑

i

∫ T

0
dt

δho(ri , t)

t

∫ t

0
dt ′ G22(ri , t |r′, t ′)

µ(r′)
∂h(r′, t ′)

∂t ′ , (D4)

where we have dropped the off notation going forward and we have now included the dependence upon the image point r′ in the vector
functions δhσ

DC and δhµ

DC; these functions are to be specified below.
The gradients in eqs (D3) and (D4) are conveniently split into two parts,

1γ h
σ (r′) = −

∑
i

∫ T

0
dt

δho(ri , t)

t
δhσ

DC(ri , r′), (D5)

2γ h
σ (r′) = −

∑
i

∫ T

0
dt

δho(ri , t)

t

∫ t

0
dt ′G21(ri , t |r′, t ′){e(r′, t ′) − eDC(r′)}, (D6)

1γ h
µ (r′) = −

∑
i

∫ T

0
dt

δho(ri , t)

t
δhµ

DC
(ri , r′) (D7)

and

2γ h
µ (r′) = −

∑
i

∫ T

0
dt

δho(ri , t)

t

∫ t

0
dt ′ G22(ri , t |r′, t ′)

µ(r′)
∂h(r′, t ′)

∂t ′ . (D8)

Using the reciprocity relationship in eq. (A18), we modify eq. (D6) as

2γ h
σ (r′) = −

∑
i

∫ T

0
dt

δho(ri , t)

t

∫ t

0
dt ′G21(ri , t |r′, t ′){e(r′, t ′) − eDC(r′)}

= −
∑

i

∫ T

0
dt ′

∫ T

t ′

δho(ri , t)

t
G21(ri , t |r′, t ′){e(r′, t ′) − eDC(r′)}dt

= −
∑

i

∫ T

0
dt ′

∫ T

t ′
{e(r′, t ′) − eDC(r′)}

stepG+
12(r′, t ′|ri , t)

µ(ri )

δho(ri , t)

t
dt

=
∫ T

0
dt ′{e(r′, t ′) − eDC(r′)} ·

∑
i

∫ t ′

T
dt

stepG+
12(r′, t ′|ri , t)

µ(ri )

δho(ri , t)

t

=
∫ T

0
dt ′e(r′, t ′) · estep

b (r′, t ′|δho) − eDC(r′) ·
∫ T

0
dt ′estep

b (r′, t ′|δho), (D9)

where

estep
b (r′, t ′|δho) =

∑
i

∫ t ′

T
dt

stepG+
12(r′, t ′|ri , t)

µ(ri )

δho(ri , t)

t
. (D10)

Differentiating eq. (D10) with respect to t ′ it is easy to show that

∂estep
b (r′, t ′|δho)

∂t ′ = eb(r′, t ′|δho), (D11)
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where

eb(r′, t ′|δho) =
∑

i

∫ t ′

T
dt

G+
12(r′, t ′|ri , t)

µ(ri )

δho(ri , t)

t
. (D12)

When we consider eq. (D8) and use eq. (A17), along with similar series of steps used for the conductivity gradient, we have

2γ h
µ (r′) = −

∑
i

∫ T

0
dt

δho(ri , t)

t

∫ t

0
dt ′ G22(ri , t |r′, t ′)

µ(r′)
∂

∂t ′ h(r′, t ′)

= −
∑

i

∫ T

0
dt ′

∫ T

t ′

δho(ri , t)

t

G22(ri , t |r′, t ′)
µ(r′)

∂

∂t ′ h(r′, t ′)dt

= −
∑

i

∫ T

0
dt ′

∫ T

t ′

∂

∂t ′ h(r′, t ′)
G+

22(r′, t ′|ri , t)

µ(ri )

δho(ri , t)

t
dt

=
∫ T

0
dt ′ ∂

∂t ′ h(r′, t ′) ·
∑

i

∫ t ′

T
dt

G+
22(r′, t ′|ri , t)

µ(ri )

δho(ri , t)

t

=
∫ T

0
dt ′ ∂

∂t ′ h(r′, t ′) · hb(r′, t ′|δho), (D13)

where

hb(r′, t ′|δho) =
∑

i

∫ t ′

T
dt

G+
22(ri , t |r′, t ′)

µ(ri )

δho(ri , t)

t
. (D14)

It is now straightforward to show, by using eqs (A11) and (A12) that the back-propagated electric and magnetic fields in eqs (D12) and (D14)
satisfy the adjoint Maxwell equations in reverse time, from time T to 0,

σeb + ∇xhb = 0, (D15)

−∇xeb − µ∂hb/∂t = −
∑

i

δho(ri , t)

t
δ(r − ri ). (D16)

We now treat the DC components of the gradient (eqs D5 and D7). For the DC conductivity gradient, the perturbed Maxwell eqs (B4) and
(B5) at DC are expressed as

σδeσ
DC − ∇xδhσ

DC = −δσeDC, (D17)

∇xδeσ
DC = 0. (D18)

Now the perturbed magnetic field can be determined from the DC electric field, where

∇x
1

σ
∇xδhσ

DC
= ∇x

δσ

σ
eDC. (D19)

Solution to eq. (D19) is formally written as

δhσ

DC
(r) =

∫
v′

G(r, r′)∇′x
δσ (r′)
σ (r′)

eDC(r′) dr′, (D20)

where the tensor Green’s function, G(r, r′), satisfies the following equation,

∇x
1

σ
∇xG = −ζ (r − r′). (D21)

Because of the symmetric operator in eq. (D21) we deduce the following reciprocity relationship,

G̃(r, r′) = G(r′, r), (D22)

where ∼ denotes transposition of a dyadic. Abstracting from equation (B1), the perturbation in the cost functional related to the DC part of
the problem for magnetic field data is expressed as

δϑDC(σ ) = −
∑

i

∫ T

0
dt

δho(ri , t)

t
· δhσ

DC
(ri ). (D23)

Substituting eq. (D20) into (D23) produces

δϑDC(σ ) = −
∫

v′
dr′ ∑

i

∫ T

0
dt

δho(ri , t)

t
G(ri , r′)∇′x

δσ (r′)
σ (r′)

eDC(r′). (D24)
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Taking the transpose of eq. (D24), noting eq. (D22), allows one to write eq. (D24) as

δϑDC(σ ) = −
∫

v′
dr′ ∑

i

∇′x
δσ (r′)
σ (r′)

eDC(r′)G(r′, ri )
∫ T

0
dt

δho(ri , t)

t
. (D25)

Next using the dyadic identity, that can be found in Tai (1990),

∇′x
δσ (r′)
σ (r′)

eDC(r′)G(r′, ri ) = ∇′ ·
{

δσ (r′)
σ (r′)

eDC(r′)xG(r′, ri )

}

+ δσ (r′)
σ (r′)

eDC(r′) · [∇′xG(r′, ri )] (D26)

and the divergence theorem for tensors (see Chew 1990), we can express eq. (D25) as

δϑDC(σ ) = −
∫

v′
dr′ ∑

i

δσ (r′)
σ (r′)

eDC(r′)∇′xG(r′, ri )
∫ T

0
dt

δho(ri , t)

t

−
∫∫
© dr′n̂ ·

{
δσ (r′)
σ (r′)

eDC(r′)xG(r′, ri )

} ∫ T

0
dt

δho(ri , t)

t
. (D27)

The last term in eq. (D27) vanishes as the points r′ on the enclosed surface tend to infinity, with respect to interior points inside the volume,
including all sources of the fields and measurement points ri . Using this fact, along with eqs (B2) and (B3), we finally express the DC gradient
term in eq. (D5) as

1γ h
σ (r′) = −

∑
i

1

σ (r′)
eDC(r′)∇′xG(r′, ri )

∫ T

0
dt

δho(ri , t)

t
, (D28)

where

δhσ

DC
(ri , r′) = 1

σ (r′)
eDC(r′)∇′xG(r′, ri ). (D29)

At this point, we define a DC back-propagated electric field

eDC
b (r′|δho) = −

∑
i

1

σ (r′)
∇′xG(r′, ri )

∫ T

0
dt

δho(ri , t)

t
, (D30)

such that

1γ h
σ (r′) = eDC(r′) · eDC

b (r′|δho), (D31)

where from eq. (D21) we observe that this back-propagated field satisfies

∇xeDC
b =

∑
i

∫ T

0
dt

δho(ri , t)

t
δ(r − ri ), (D32)

which also can be derived by integrating eq. (D16) over the time range {T , −∞} and setting eDC
b = ∫ T

−∞ dteb, given that hb(t = T ) = 0 and
hb(t = −∞) = 0. Because the magnetic field data, that is sensitive to electrical conductivity, is divergence free (this can be directly seen by
applying the divergence operator to eq. D32) we take the curl of eq. (D32),

∇x∇xeDC
b = ∇x

∑
i

∫ T

0
dt

δho(ri , t)

t
δ(r − ri ). (D33)

Eq. (D33) has a non-trivial null space given by the vector fields described by the gradient of a scalar potential. Hence, special techniques are
needed to deflate this null space out from eDC

b (r′| δho). Methods that accomplish this task can be found in Chan et al. (2002).
Next, we now turn our attention to eq. (D7). We first show that the perturbed DC magnetic field, δhµ

DC in eq. (D1), satisfies,

δhµ

DC
(ri ) =

∫
v′

∇g(ri , r′)∇′ · hDC(r′)δµ(r′) dr′, (D34)

where g(ri , r′) is a scalar Green’s function yet to be determined. Eq. (D34) can be derived directly from the Maxwell equations using a
perturbation analysis for magnetic permeability at steady state, where

∇xδhµ

DC = 0 (D35)

and

δeµ

DC = 0. (D36)

Now we know bDC = µhDC and bDC + δbµ

DC = (µ + δµ)(hDC + δhµ

DC). Because ∇ · bDC = 0 and ∇ · (bDC + δbµ

DC) = 0, it therefore follows
that ∇ · δbµ

DC = 0, where δbµ

DC = µδhµ

DC + δµhDC + δµδhµ

DC ≈ µδhµ

DC + δµhDC. Thus we set

0 = ∇ · µδhµ

DC + ∇ · δµhDC. (D37)
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Next using the fact that ∇xδhµ

DC = 0, we set δhµ

DC = ∇φ, and solve

∇ · µ∇φ = −∇ · δµhDC. (D38)

The solution to the above Possion equation is formally expressed as

φ(r) =
∫

v′
g(r, r′)∇′ · hDC(r′)δµ(r′) dr′ (D39)

and

δhµ

DC(ri ) =
∫

v′
∇g(ri , r′)∇′ · hDC(r′)δµ(r′) dr′. (D40)

Here, the scalar Green’s function satisfies

∇ · µ∇g = −δ(r − r′). (D41)

Abstracting again from eq. (B1), where δϑDC(µ) = − ∑
i

∫ T
0 dt δho(ri ,t)

t · δhµ

DC(ri ), we have

δϑDC(µ) = −
∫

v

dv′ ∑
i

∫ T

0
dt

δho(ri , t)

t
∇g(ri , r′)∇′ · hDC(r′)δµ(r′). (D42)

Next, using eqs (B2), (B3) and (D42), we find

1γ h
µ (r′) = −

∑
i

∫ T

0
dt

δho(r,
i t)

t
∇g(ri , r′)∇′ · hDC(r′), (D43)

where

δhµ

DC(ri , r′) = ∇g(ri , r′)∇′ · hDC(r′) (D44)

in eq. (D7). Because g(r, r′) = g(r′, r), the following reciprocity relation can be shown to hold:

v(r) · ∇g(r, r′)∇′ · u(r′) = u(r′) · ∇′g(r′, r)∇ · v(r). (D45)

Here we note that the arbitrary vector, v(r), and scalar Greens function, g(r, r′), sourced at r′, vanish as |r| → ∞, where r′ stays finite.
Likewise the arbitrary vector, u(r′), and the Green’s function g(r′, r), sourced at r, vanish as |r′| → ∞, with r finite. Thus the DC component
of the gradient can be expressed point wise as

1γ h
µ (r′) = −

∑
i

∫ T

0
dthDC(r′) · ∇′g(r′, ri )∇ · δho(ri , t)

t
. (D46)

We find it convenient to define a DC back-propagated magnetic field

hDC
b (r′|δho) = −

∑
i

∇′g(r′, ri )∇ ·
∫ T

0

δho(ri , t)

t
dt. (D47)

To effectively compute this back-propagated field, we multiply eq. (D47) by the operator ∇′ · µ(r′) to obtain

∇′ · µ(r′)hDC
b (r′) = −

∑
i

∇′ · µ(r′)∇′g(r′, ri )∇ ·
∫ T

0

δho(ri , t)

t
dt. (D48)

Because ∇′xhDC
b = 0, hDC

b is determined from the gradient of a scalar potential. Using this fact along with equation (D41) we find that

∇′ · µ(r′)∇′φb(r′) = ∇′ ·
∑

i

∫ T

0

δho(r′, t)

t
dtδ(r′ − ri ), (D49)

where

hDC
b = ∇′φb. (D50)

Thus, the DC component of the gradient in eq. (D7) is compactly expressed as

1γ h
µ (r′) = hDC(r′) · hDC

b (r′|δho). (D51)

Because the DC back-propagated magnetic field is curl free it cannot be obtained by integrating eq. (D15) over the time range T to −∞,
setting hDC

b = ∫ T
−∞ dthb, and then using (D16) to eliminate the back- propagated DC electric field. Instead, we see, it is determined from a

projection of the magnetic field data errors that is curl free.
Combining eqs (D9) and (D31) and eqs (D13) and (D51) the gradients for electrical conductivity and magnetic permeability are finally

expressed as

γ h
σ (r′) =

∫ T

0
dt ′e(r′, t ′) · estep

b (r′, t ′|δho) − eDC(r′) ·
∫ T

0
dt ′estep

b (r′, t ′|δho)

+ eDC(r′) · eDC
b (r′|δho) (D52)
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and

γ h
µ (r′) =

∫ T

0
dt ′ ∂

∂t ′ h(r′, t ′) · hb(r′, t ′|δho) + hDC(r′) · hDC
b (r′|δho). (D53)

In summary, eqs (D52) and (D53) are the computational forms of the gradients we are seeking. The back-propagated electric and magnetic
fields, eb(r′, t ′|δho) and hb(r′, t ′|δho), are determined from eqs (D15) and (D16), where the back-propagated electric field step response is

given by estep
b (r′, t ′|δho) = ∫ t ′

T dteb(r′, t |δho). The DC back-propagated fields, eDC
b (r′, t ′|δho) and hDC

b (r′, t ′|δho), are determined respectively
from eqs (D33), and (D49) and (D50).

We note that eq. (D53) reverts back to the causal form given by Wang et al. (1994) when hDC(r′) is set to zero. However, this is not the case
in eq. (D52), when eDC(r′) is set to zero. In this instance, eq. (D52) involves a back-propagated electric field step response, while in Wang et al.
(1994), it is incorrectly specified using a back-propagated electric field. Nevertheless, it can be shown that the two types of back-propagated
fields are related to each other through a simple time differentiation.

As a final note, eq. (D53) requires evaluation of hDC(r′), which can arise from either inductive or grounded sources. For an inductive source,
hDC(r′) is determined by the impressed source jimp and variations in µ. Here, eDC(r′) = 0 everywhere. However, if the source is grounded,
hDC(r′)is also influenced by the conduction currents flowing in the earth at steady state because eDC(r′) 
= 0. To separate these two types of
responses we consider Ampere’s law for two situations:

(i) the magnetic field, hDC, which is influenced by jimp and variations in µ and σ ;
(ii) a magnetic field, which we call hDC

mmr, which is not influenced by any variation in µ, but is affected by jimp along with variations in σ .

Thus, for case (i)

−σeDC + ∇xhDC = jimp (D54)

and for case (ii)

−σeDC + ∇xhDC
mmr = jimp. (D55)

Subtracting the two equations produces

∇x
(
hDC − hDC

mmr

) = 0. (D56)

Let us define a scattered field

hs = hDC − hDC
mmr , (D57)

where

hs = ∇ψ, (D58)

on account of eq. (D56). We also know that ∇ · µhDC = 0 or ∇ · µhs = −∇ · µhDC
mmr. Hence,

∇ · µ∇ψ = −∇ · µhDC
mmr , (D59)

and

hDC = ∇ψ + hDC
mmr . (D60)

To complete the solution of hDC in eq. (D60) requires that we specify hDC
mmr. This is accomplished by taking the curl of eq. (D55) and solving

∇x∇xhDC
mmr = ∇xσeDC + ∇xjimp. (D61)

Because the DC electric field is curl-free, it is determined by applying the divergence operator to eq. (D55),

∇ · σ∇ζ = −∇ · jimp, (D62)

where

∇ζ = eDC. (D63)
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